Secondary and tertiary structure elasticity of titin Z1Z2 and a titin chain model.

نویسندگان

  • Eric H Lee
  • Jen Hsin
  • Olga Mayans
  • Klaus Schulten
چکیده

The giant protein titin, which is responsible for passive elasticity in muscle fibers, is built from approximately 300 regular immunoglobulin-like (Ig) domains and FN-III repeats. While the soft elasticity derived from its entropic regions, as well as the stiff mechanical resistance derived from the unfolding of the secondary structure elements of Ig- and FN-III domains have been studied extensively, less is known about the mechanical elasticity stemming from the orientation of neighboring domains relative to each other. Here we address the dynamics and energetics of interdomain arrangement of two adjacent Ig-domains of titin, Z1, and Z2, using molecular dynamics (MD) simulations. The simulations reveal conformational flexibility, due to the domain-domain geometry, that lends an intermediate force elasticity to titin. We employ adaptive biasing force MD simulations to calculate the energy required to bend the Z1Z2 tandem open to identify energetically feasible interdomain arrangements of the Z1 and Z2 domains. The finding is cast into a stochastic model for Z1Z2 interdomain elasticity that is generalized to a multiple domain chain replicating many Z1Z2-like units and representing a long titin segment. The elastic properties of this chain suggest that titin derives so-called tertiary structure elasticity from bending and twisting of its domains. Finally, we employ steered molecular dynamics simulations to stretch individual Z1 and Z2 domains and characterize the so-called secondary structure elasticity of the two domains. Our study suggests that titin's overall elastic response at weak force stems from a soft entropic spring behavior (not described here), from tertiary structure elasticity with an elastic spring constant of approximately 0.001-1 pN/A and, at strong forces, from secondary structure elasticity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tertiary and secondary structure elasticity of a six-Ig titin chain.

The protein titin functions as a mechanical spring conferring passive elasticity to muscle. Force spectroscopy studies have shown that titin exhibits several regimes of elasticity. Disordered segments bring about a soft, entropic spring-type elasticity; secondary structures of titin's immunoglobulin-like (Ig-) and fibronectin type III-like (FN-III) domains provide a stiff elasticity. In this st...

متن کامل

Spontaneous dimerization of titin protein Z1Z2 domains induces strong nanomechanical anchoring.

Muscle elasticity strongly relies on the mechanical anchoring of the giant protein titin to both the sarcomere M-band and the Z-disk. Such strong attachment ensures the reversible dynamics of the stretching-relaxing cycles determining the muscle passive elasticity. Similarly, the design of biomaterials with enhanced elastic function requires experimental strategies able to secure the constituen...

متن کامل

Solution scattering suggests cross-linking function of telethonin in the complex with titin.

Telethonin interacts specifically with the two Z-disk IG-like domains (Z1Z2) at the N terminus of titin, the largest presently known protein. Analytical ultracentrifugation and synchrotron radiation x-ray scattering were employed to study the solution structures of Z1Z2 and its complexes with telethonin, and low resolution models were constructed ab initio from the scattering data. A seven resi...

متن کامل

The Mechanical Stability of the Titin Z1Z2/Telethonin Complex revealed by Steered Molecular Dynamics Simulations

The giant muscle protein titin, which provides a passive restoring force upon extension, is essential for maintaining the integrity of the muscular sarcomere. In order for titin to reversibly stretch and contract, the ends of this protein must be constrained, or anchored, at its terminal domains at the sarcomeric Z-disc and M-line. Here we investigate the role that telethonin, a protein which j...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 93 5  شماره 

صفحات  -

تاریخ انتشار 2007